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Basics of representation theory



Representation

Definition
A representation (φ,Cn) over the vector space Cn of a group G is
a homomorphism φ : G→ GL(n,C).

Example

Every group has trivial representation (φtriv,C): φtriv(g) = 1.

Example

Sn has representation (φsgn,C) given by φsgn(π) = sgn(π).

Example

Representations of U(d) include:

(φ,
(
Cd
)⊗n) given by φ(U) = U⊗n

(φdet,C) given by φdet(U) = det(U)
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Direct sum and tensor product

Definition
Let (φ1, V1) and (φ2, V2) be representations of G. Then
representations (φ1 ⊕ φ2, V1 ⊕ V2) and (φ1 ⊗ φ2, V1 ⊗ V2) of G are
their direct sum and tensor product, respectively.

Example

Let (φ1,C2), (φ2,C) be representations of U(2) such that

φ1(U) = U φ2(U) = 1

Then (φ1 ⊕ φ2,C3) is their direct sum and (φ1 ⊗ φ2,C2) is their
tensor product.

(φ1 ⊕ φ2)(U) = U ⊕ 1 =
(
U 0
0 1

)
(φ1 ⊗ φ2)(U) = U ⊗ 1 = U
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Irreducible representations

Definition
We say that a representation (φ, V ) of group G is irreducible if it
is not a direct sum of at least two other representations.

Example

If the representation space V of representation (φ, V ) is
1-dimensional, then (φ, V ) is irreducible.

Theorem
Every representation (φ, V ) of G is isomorphic to a direct sum of
irreducible representations of G:

φ(g) ∼=
⊕
λ∈Ĝ

λ(g)⊗ Inλ
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Schur duality



Representations of U(d) and Sn
Consider representations(

Q,
(
Cd
)⊗n)

of U(d), where

Q(U) |i1i2 . . . in〉 = U |i1〉U |i2〉 . . . U |in〉

(
P,
(
Cd
)⊗n)

of Sn, where

P(π) |i1i2 . . . in〉 =
∣∣iπ−1(1)

〉 ∣∣iπ−1(2)

〉
. . .
∣∣iπ−1(n)

〉

We can consider representation
(
QP,

(
Cd
)⊗n)

of U(d)× Sn,
given by

QP(U, π) = Q(U)P(π) = P(π)Q(U)
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Schur duality

Theorem. (Schur duality)

There exist a basis (Schur basis) in which representation(
QP,

(
Cd
)⊗n)

of U(d)× Sn decomposes into irreducible

representations qλ and pλ of U(d) and Sn respectively:

QP(U, π) ∼=
⊕

λ∈Par(n,d)

qλ(U)⊗ pλ(π)

Definition
Schur transform Usch is unitary transformation implementing the
base change from standard basis to Schur basis:

Usch =
∑
i

|schi〉 〈i|



Schur duality

Theorem. (Schur duality)

There exist a basis (Schur basis) in which representation(
QP,

(
Cd
)⊗n)

of U(d)× Sn decomposes into irreducible

representations qλ and pλ of U(d) and Sn respectively:

QP(U, π) ∼=
⊕

λ∈Par(n,d)

qλ(U)⊗ pλ(π)

Definition
Schur transform Usch is unitary transformation implementing the
base change from standard basis to Schur basis:

Usch =
∑
i

|schi〉 〈i|



Schur duality

QP(U, π) ∼=
⊕

λ∈Par(n,d)

qλ(U)⊗ pλ(π)

Example

In case of 2 qubits, i.e.,
(
C2
)⊗2

we get

QP(U, π) ∼=

λ=(1,1)︷ ︸︸ ︷
(qdet(U)⊗ psgn(π))⊕

λ=(2,0)︷ ︸︸ ︷
(q3 dim(U)⊗ ptriv(π)) =

=
(

det(U) sgn(π) 0
0 q3 dim(U)

)
|01〉 − |10〉
|00〉 , |11〉 , |01〉+ |10〉
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Applications



Unitaries commuting with qubit permutations

Pπ = QP(I, π)

∼=
⊕

λ∈Par(n,d)

qλ(I) ⊗ pλ(π)

Example

Recall Schur duality for 2 qubits:

Pπ =

QP(, π) ∼=
(

det() sgn(π) 0
0 q3 dim()

)
=
(

sgn(π) 0
0 I3

)

Unitaries commuting with 2-qubit permutations are given by

Usch

(
U(1) 0

0 U(3)

)

U †sch
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More applications

Theorem
Schur transform can be implemented efficiently on a quantum
computer.

Estimate the spectrum of an unknown mixed state ρ from ρ⊗n

1 Apply Schur transform
2 Measure λ ∈ Par(n, d)
3 Estimate of spectrum of ρ is given by (λ1/n, . . . , λd/n)

Universal distortion-free entanglement concentration using
only local operations.

1 Each party applies Schur transform
2 Measure λ ∈ Par(n, d). Discard Qλ, retaining Pλ.
3 A and B share maximally entangled state of dimension

dim(Pλ)
Encoding/decoding into decoherence free subspaces
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Thank you!



Outline of proof for Schur duality
Every representation can be expressed as a direct sum of irreps:

P(π)
Sn∼=
⊕
λ∈Ŝn

pλ(π)⊗ Inλ Q(U)
Ud∼=
⊕
λ∈Ûd

qλ(U)⊗ Inλ

Since P(π) and Q(U) commute, via Schur’s lemma we get

Q(U)P(π)
Ud×Sn∼=

⊕
α

⊕
β

qα(U)⊗ pβ(π)⊗ Imα,β

Since algebras generated by P and Q centralize each other, we
have mα,β ∈ {0, 1}

Q(U)P(π)
Ud×Sn∼=

⊕
λ

qλ(U)⊗ pλ(π)

Finally, it can be shown that the range of λ in previous formula
corresponds to Par(n, d):

Q(U)P(π)
Ud×Sn∼=

⊕
λ∈Par(n,d)

qλ(U)⊗ pλ(π)
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