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Representation

Definition
A representation (¢, C™) over the vector space C™ of a group G is
a homomorphism ¢ : G — GL(n,C).

Example
Every group has trivial representation (¢riv, C): duiv(g) = 1.

Example
Sy, has representation (¢sgn, C) given by ¢sen(m) = sgn(m).

Example

Representations of U(d) include:
o (4, (CY)®") given by (U) = U="
@ (¢get, C) given by dget(U) = det(U)
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Direct sum and tensor product

Definition

Let (¢1,V71) and (¢2, V) be representations of G. Then
representations (¢1 @ ¢2, V1 @ V2) and (1 @ ¢, V1 ® V2) of G are
their direct sum and tensor product, respectively.

Example
Let (¢1,C?), (42, C) be representations of /(2) such that

n(U)=U  $(U)=1
Then (¢ @© ¢, C3) is their direct sum and (¢ ® ¢, C2) is their

tensor product.

o -vei=(T ) @eww-ve1-v
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Irreducible representations

Definition
We say that a representation (¢, V') of group G is irreducible if it
is not a direct sum of at least two other representations.

Example
If the representation space V' of representation (¢, V) is

1-dimensional, then (¢, V) is irreducible.

Theorem
Every representation (¢, V') of G is isomorphic to a direct sum of
irreducible representations of G':

$(9) = P Mg) ® I,

\eG
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Representations of U(d) and S,

Consider representations
° (Q, (Cd)®n> of U(d), where

QU) |iria...in) = Ulir) U lig) ... U |in)

° (P, (Cd)®n) of S,,, where

P(7) liviz...in) = |iz=1(1)) [in-12)) - - |ir=1(n))

We can consider representation (QP7 ((Cd)®n> of U(d) x Sy,
given by
QP (U, m) = QU)P(m) = P(m)Q(U)
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Definition
Schur transform Ugg, is unitary transformation implementing the
base change from standard basis to Schur basis:

Usen = Y _ |schs) (il
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Schur duality

QP(U,m = P anl)@pa(n)

AePar(n,d)
Example
In case of 2 qubits, i.e., (C2)®2 we get

A=(1,1) A=(2,0)
QP(U7 7T) = (Qdet(U) ® psgn(ﬂ)) ¥ (QS dim(U) & ptriv(ﬂ')) =

B <det(U) sgn () 0 > |01) — [10)
B 0 azdim(U)/ 100), [11), |01) + [10)
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Unitaries commuting with qubit permutations

Pr = QP(Ia 77) = @ Idim(qk) ® p/\(ﬂ-)
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Example
Recall Schur duality for 2 qubits:

B ., (det(I )sgn(m) 0
PW_QP(I77T): ( Og Q3dim(I )>
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Unitaries commuting with qubit permutations

Pr = QP(Ia 77) = @ Idim(qk) ® p/\(ﬂ-)
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Example
Recall Schur duality for 2 qubits:

Pr=QP(l ,m) = <det([ )Osgn(ﬂ) CISdi?n(I )) N <Sgr6(7r) £‘>

Unitaries commuting with 2-qubit permutations are given by
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More applications

Theorem
Schur transform can be implemented efficiently on a quantum
computer.

e Estimate the spectrum of an unknown mixed state p from p®"
@ Apply Schur transform
@ Measure \ € Par(n,d)
© Estimate of spectrum of p is given by (A1/n,..., Aq/n)
@ Universal distortion-free entanglement concentration using
only local operations.
@ Each party applies Schur transform
@ Measure A € Par(n,d). Discard Q), retaining P.
© A and B share maximally entangled state of dimension

dim(Py)
e Encoding/decoding into decoherence free subspaces
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Outline of proof for Schur duality

Every representation can be expressed as a direct sum of irreps:

Sn Uqg
NEPemeh, QU EEal) o,
Aegn )\Gljd
Since P(7) and Q(U) commute, via Schur’s lemma we get
UdXS

Q(U) @@qa ) @ pg(m) ® I, 4

Since algebras generated by P and Q centralize each other, we
have m, 3 € {0,1}
UdXSn

Q(U) @QA ) @ pa(m)

Finally, it can be shown that the range of X in previous formula
corresponds to Par(n, d):

QUIPM L @ aU) @)

AePar(n,d)
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